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1. - FORMUIATION OF THE PROBLEM

Assume that a body, subject to aerodynamic heating, begins to
melt. The forming liquid film on the melting surface moves under the
effect of pressure gradient and surface friction. The eguations of
motion of the liquid film are equivalent to the boundary layer equa-
tions.

We shall consider [the flow at moments of time néar the begin-
ning of fusion,]We thus estimate the film movement as laminar and we
shall neglect‘the inertial terms in the equation expressing the law
of the quantity of motion. We shall neglect in the equation of energy
the heat from the work of friction forces and the deceleration tempe-
rature will be estimated to be approximately equal to the thermodynamic
one,

In the system of coordinates, linked with the body surface at
the time t =0 (x being counted along this surface and y along the
normal to it in the depth of the body), the equations of motion will
take the form
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where u, Vv are the velocity components; T is the temperature; X is
the component of mass forces in the direction of the axis x; » and A
are respectively the viscosity and heat conductance factors; ¢ is
the heat capacityj § is the density; p is the pressure. We consider
X, p and consequently = as well known functions of x; fs © and A
are considered constants
Initial conditions:
at t=0 u=v =0, T=1T, Yw=0.

(1.4)

Boundary conditions:

_oT ou .
at Yy=vyup(x. ) 2 —0—1\7 === Qe B ’5; = — Ty, \lrs)

Qpy and T, are the thermal flow and friction. The quantities with the
index ,w" refer to the surface of the liquid film,

In the absence of vaporigation and of heterogenous reactionms,
the surface of the liquid film is determined by the equation

6y Ww.
e “bouy, e = Ve (1,6)

For & semi-infinite body made of material devoid of a clearly-expressed
melting point, we have the conditions

at y—~oo =7, n
and at T - Tim 4=v-—=21 (1'8)

Most of the researchers ( [1], [2], [3] and others) impose for
a semi-infinite body made of glass-like material the following condi-
tion instead of (1.8) :

at y—oo -0, ©-s0. (1.8H

Such formulation of the problem is incorrect, for, integrating the equa-
tion (1,2) under that condition, we arrive at the integral

ue \ L [(g’f- — rx'/) (v — Ya) — w]r{y.

!1

~

which has a finite value only in the case, when r'—§oo at T — T,.
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Such disparity of conditions (1.81), correct at first sight,
and of the equation (1.2) is due to the fact, that glass-like materials
reveal elastic properties at low temperatures, and the stress tensor
has a form distinct from the stress temsor of a viscous fluid.

The accounting of this phenomenon is quite complex, and it is
thus appropriate, as was pointed out in [4], to introduce a conditional
"point of fusion" -~ Ty, approximately determining it as such, at which
the elastic properties of the material become noticeable, The snthors,
gsetting up the conditions (1.81), are anyhow practically compelled
to either take the finite limits of integration, which correspohd to
choice of Tp, or to limit themselves in selecting T oo, as is done by
Satton [1] , who takes T = 0°K.

2. TRANSITION TO LAGRANGE VARIABLES.

The solution of the problem formulated is made more complex
by the fact that the boundary conditions are assigned on a mobile sur-
face, whose position and shape are not known beforehand. In connection
with this, a transition to Lagrange variables offers interest, since
their boundary will be fixed. '

We shall integrate the equation (1.2) over y:

ou ap )
f‘?)}?:(a—ﬂx)(y—yw)—t.. .0

and we shall then pass to Lagrange variables §,q, ¢, linked with the

liquid particles, i. e, we shall observe the variation of hydrodynamic

guantities in the particle ( see the diagram Fig, 1, next page), Then
x=xE 0 0 y=yE % b

In order to find x and y as functions of f,h,t' s We have the equations

with the initial conditions:
at =0 x—x & W y=y( 1. 2.3)



The selection of x( 7 and y(¢ 7 is up to us; in the particular case
we may have t=0 x=f y=1n

In order to pass to variables §,q,{ in the equations (2.1) (1.3), we
shall make use of the formulas :

9 __99x = 98 9y
F=ox ot T gy o
0 _09dx 0 9y
]Ty—=dxdq+0ydq'
o 9 d )
aF=79f TH4ax tYqy "

At moments of time near the beginning of fusion, and at appropriate choice

of x,, Yo we may estimate % and % of one order, and since we have
in the boundary layer
|
| ou | a d é
; |Qu! o8i bR
|ox | <oy | then o0 =y o

Similarly IL_9L2
Passing to Lagrange variables in the equation (2.1) and inte-

grating it over ‘Y( , we shall have

n .

P oy
. Il:::.S " 0.,. .

Im

(v=7"m( ) is the line where T = Tp).
The continuity equation in Lagrange variables has the form

op A - a
(5’; — X J{y = ¥a) = ‘-} én 4

D(x, y) __12&\'0- yi)
DE m ~ DE w

Differentiating this equation in time and utilizing (2.2), we obtain

Ou dy 0x dv  du Oy ox v

% om0y om0 om &% =0
Assuming that %ii and 7‘,’%’. are of one order, we may neglect the term
(]

ox ot
on 0%
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In such case we shall obtain from the last equation by integrating over

+ oudy ouoy
o— dy, 0t g dy, d.

ox
of

i

The equation (1,3) is transformed to the form

The boundary conditions for T are :
ol d
on the curve o3 7)=0 1 o =" 9w 7{,-

1
and on the curve ,¢ 5 =0 7=T.
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Thus the problem has been reduced to the sdlution of equations
(2.2), (2.4),- (2.5) and (2.6). The equation (2.6) is resolved by the
network method on lines § = const. The integrals (2.4) and (2.5) are
computed over the time for each step, and then from the equations (2,2)
xG ) y&wt) are found in the following moment of time. Note that by
the selection of (& 7). (. 7 , we may succeed in obtaining that to a
uniform net in coordinates §, 7 & nonuniform net in coordinates x, y

correspond in the region of great temperature gradiehts with a small step,
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